Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 140
Filtrar
1.
Eur J Immunol ; 52(1): 161-177, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34524684

RESUMO

The migration of CD4+ effector/memory T cells across the blood-brain barrier (BBB) is a critical step in MS or its animal model, EAE. T-cell diapedesis across the BBB can occur paracellular, via the complex BBB tight junctions or transcellular via a pore through the brain endothelial cell body. Making use of primary mouse brain microvascular endothelial cells (pMBMECs) as in vitro model of the BBB, we here directly compared the transcriptome profile of pMBMECs favoring transcellular or paracellular T-cell diapedesis by RNA sequencing (RNA-seq). We identified the atypical chemokine receptor 1 (Ackr1) as one of the main candidate genes upregulated in pMBMECs favoring transcellular T-cell diapedesis. We confirmed upregulation of ACKR1 protein in pMBMECs promoting transcellular T-cell diapedesis and in venular endothelial cells in the CNS during EAE. Lack of endothelial ACKR1 reduced transcellular T-cell diapedesis across pMBMECs under physiological flow in vitro. Combining our previous observation that endothelial ACKR1 contributes to EAE pathogenesis by shuttling chemokines across the BBB, the present data support that ACKR1 mediated chemokine shuttling enhances transcellular T-cell diapedesis across the BBB during autoimmune neuroinflammation.


Assuntos
Barreira Hematoencefálica , Linfócitos T CD4-Positivos , Sistema do Grupo Sanguíneo Duffy , Encefalomielite Autoimune Experimental , Células T de Memória , Esclerose Múltipla , Receptores de Superfície Celular , Migração Transendotelial e Transepitelial , Animais , Camundongos , Barreira Hematoencefálica/imunologia , Linfócitos T CD4-Positivos/imunologia , Sistema do Grupo Sanguíneo Duffy/genética , Sistema do Grupo Sanguíneo Duffy/imunologia , Encefalomielite Autoimune Experimental/genética , Encefalomielite Autoimune Experimental/imunologia , Inflamação/genética , Inflamação/imunologia , Células T de Memória/imunologia , Camundongos Knockout , Esclerose Múltipla/genética , Esclerose Múltipla/imunologia , Receptores de Superfície Celular/genética , Receptores de Superfície Celular/imunologia , Migração Transendotelial e Transepitelial/genética , Migração Transendotelial e Transepitelial/imunologia
2.
JCI Insight ; 6(15)2021 08 09.
Artigo em Inglês | MEDLINE | ID: mdl-34156982

RESUMO

The stimulator of IFN genes (STING) protein senses cyclic dinucleotides released in response to double-stranded DNA and functions as an adaptor molecule for type I IFN (IFNI) signaling by activating IFNI-stimulated genes (ISG). We found impaired T cell infiltration into the peritoneum in response to TNF-α in global and EC-specific STING-/- mice and discovered that T cell transendothelial migration (TEM) across mouse and human endothelial cells (EC) deficient in STING was strikingly reduced compared with control EC, whereas T cell adhesion was not impaired. STING-/- T cells showed no defect in TEM or adhesion to EC, or immobilized endothelial cell-expressed molecules ICAM1 and VCAM1, compared with WT T cells. Mechanistically, CXCL10, an ISG and a chemoattractant for T cells, was dramatically reduced in TNF-α-stimulated STING-/- EC, and genetic loss or pharmacologic antagonisms of IFNI receptor (IFNAR) pathway reduced T cell TEM. Our data demonstrate a central role for EC-STING during T cell TEM that is dependent on the ISG CXCL10 and on IFNI/IFNAR signaling.


Assuntos
Interferon Tipo I , Proteínas de Membrana/imunologia , Receptor de Interferon alfa e beta , Linfócitos T , Migração Transendotelial e Transepitelial/imunologia , Animais , Imunidade Inata , Molécula 1 de Adesão Intercelular/imunologia , Interferon Tipo I/imunologia , Interferon Tipo I/metabolismo , Camundongos , Receptor de Interferon alfa e beta/imunologia , Receptor de Interferon alfa e beta/metabolismo , Transdução de Sinais/imunologia , Linfócitos T/imunologia , Linfócitos T/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Molécula 1 de Adesão de Célula Vascular/imunologia
3.
Front Immunol ; 12: 678030, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34135903

RESUMO

The actin-related protein (ARP) 2/3 complex, essential for organizing and nucleating branched actin filaments, is required for several cellular immune processes, including cell migration and granule exocytosis. Recently, genetic defects in ARPC1B, a subunit of this complex, were reported. Mutations in ARPC1B result in defective ARP2/3-dependent actin filament branching, leading to a combined immunodeficiency with severe inflammation. In vitro, neutrophils of these patients showed defects in actin polymerization and chemotaxis, whereas adhesion was not altered under static conditions. Here we show that under physiological flow conditions human ARPC1B-deficient neutrophils were able to transmigrate through TNF-α-pre-activated endothelial cells with a decreased efficiency and, once transmigrated, showed definite impairment in subendothelial crawling. Furthermore, severe locomotion and migration defects were observed in a 3D collagen matrix and a perfusable vessel-on-a-chip model. These data illustrate that neutrophils employ ARP2/3-independent steps of adhesion strengthening for transmigration but rely on ARP2/3-dependent modes of migration in a more complex multidimensional environment.


Assuntos
Complexo 2-3 de Proteínas Relacionadas à Actina/deficiência , Complexo 2-3 de Proteínas Relacionadas à Actina/genética , Mutação , Neutrófilos/imunologia , Doenças da Imunodeficiência Primária/imunologia , Migração Transendotelial e Transepitelial/imunologia , Actinas/química , Estudos de Casos e Controles , Adesão Celular/genética , Células Cultivadas , Quimiotaxia/genética , Células Endoteliais da Veia Umbilical Humana/metabolismo , Humanos , Infiltração de Neutrófilos/genética , Polimerização , Doenças da Imunodeficiência Primária/sangue , Doenças da Imunodeficiência Primária/genética
4.
Mol Microbiol ; 116(2): 498-515, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-33891779

RESUMO

Lyme disease is the most common tick-transmitted disease in the northern hemisphere and is caused by the spirochete Borrelia burgdorferi and related Borrelia species. The constellation of symptoms attributable to this malady results from vascular dissemination of B. burgdorferi throughout the body to invade various tissue types. However, little is known about the mechanism by which the spirochetes can breach the blood vessel wall to reach distant tissues. We have studied this process by direct observation of spirochetes in the microvasculature of living mice using multi-laser spinning-disk intravital microscopy. Our results show that in our experimental system, instead of phagocytizing B. burgdorferi, host neutrophils are involved in the production of specific cytokines that activate the endothelium and potentiate B. burgdorferi escape into the surrounding tissue. Spirochete escape is not induced by paracellular permeability and appears to occur via a transcellular pathway. Neutrophil repurposing to promote bacterial extravasation represents a new and innovative pathogenic strategy.


Assuntos
Borrelia burgdorferi/imunologia , Citocinas/imunologia , Doença de Lyme/patologia , Microvasos/fisiologia , Neutrófilos/imunologia , Migração Transendotelial e Transepitelial/imunologia , Animais , Citocinas/metabolismo , Endotélio Vascular/fisiologia , Feminino , Doença de Lyme/microbiologia , Masculino , Camundongos , Camundongos Endogâmicos BALB C
5.
Front Immunol ; 12: 602122, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33746947

RESUMO

Clever-1 also known as Stabilin-1 and FEEL-1 is a scavenger molecule expressed on a subpopulation of anti-inflammatory macrophages and lymphatic endothelial cells (LECs). However, its role in regulating dendritic cell (DC) trafficking and subsequent effects on immunity have remained unexplored. In this study, we demonstrate that DC trafficking from the skin into the draining lymph nodes is compromised in the absence of Clever-1. By adoptive transfer approaches we further show that the poor trafficking is due to the impaired entrance of DCs into afferent lymphatics. Despite this, injections of ovalbumin-loaded DCs into the footpads induced a stronger proliferative response of OT II T cells in the draining lymph nodes. This could be explained by the increased MHC II expression on DCs and a less tolerogenic phenotype of LECs in lymph nodes of Clever-1 knockout mice. Thus, although fewer DCs reach the nodes, they are more active in creating antigen-specific immune responses. This suggests that the DCs migrating to the draining lymph node within Clever-1 positive lymphatics experience immunosuppressive interactions with LECs. In conclusion, besides being a trafficking molecule on lymphatic vasculature Clever-1 is immunosuppressive towards migrating DCs and thus, regulates the magnitude of immune responses created by incoming DCs in the draining lymph nodes.


Assuntos
Moléculas de Adesão Celular Neuronais/deficiência , Células Dendríticas/imunologia , Células Endoteliais/imunologia , Deleção de Genes , Migração Transendotelial e Transepitelial/imunologia , Animais , Moléculas de Adesão Celular Neuronais/imunologia , Células Dendríticas/citologia , Células Endoteliais/citologia , Camundongos , Camundongos Knockout , Migração Transendotelial e Transepitelial/genética
6.
Front Immunol ; 12: 616583, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33692790

RESUMO

Epinephrine is a hormone secreted primarily by medullary cells of the adrenal glands which regulates permeability of blood-brain barrier (BBB). Recent studies showed signaling by epinephrine/epinephrine receptor in T cells is involved in autoimmune diseases. Nevertheless, the production of epinephrine by T cells and its pathogenic function in T cells are not well investigated. Our results show that phenylethanol N-methyltransferase (PNMT), a rate-limiting enzyme of epinephrine synthesis, is specifically expressed in vitro in differentiated TH17 cells and in tissue-resident TH17 cells. Indeed, expression levels of enzymes involved in epinephrine production are higher in TH17 cells from animals after EAE induction. The induction of PNMT was not observed in other effector T cell subsets or regulatory T cells. Epinephrine producing TH17 cells exhibit co-expression of GM-CSF, suggesting they are pathogenic TH17 cells. To delineate the function of epinephrine-production in TH17 cells, we generated a TH17-specific knockout of tyrosine hydroxylase (Th) by breeding a Th-flox and a ROR-gt-CRE mouse (Th-CKO). Th-CKO mice are developmentally normal with an equivalent T lymphocyte number in peripheral lymphoid organs. Th-CKO mice also show an equivalent number of TH17 cells in vivo and following in vitro differentiation. To test whether epinephrine-producing TH17 cells are key for breaching the BBB, migration of T cells through mouse brain endothelial cells was investigated in vitro. Both epi+ wild-type and epi- TH17 cells migrate through an endothelial cell barrier. Mice were immunized with MOG peptide to induce experimental autoimmune encephalitis (EAE) and disease progression was monitored. Although there is a reduced infiltration of CD4+ T cells in Th-CKO mice, no difference in clinical score was observed between Th-CKO and wild-type control mice. Increased neutrophils were observed in the central nervous system of Th-CKO mice, suggesting an alternative pathway to EAE progression in the absence of TH17 derived epinephrine.


Assuntos
Encefalomielite Autoimune Experimental/etiologia , Encefalomielite Autoimune Experimental/metabolismo , Epinefrina/biossíntese , Células Th17/imunologia , Células Th17/metabolismo , Animais , Biomarcadores , Barreira Hematoencefálica/metabolismo , Diferenciação Celular/imunologia , Modelos Animais de Doenças , Suscetibilidade a Doenças , Encefalomielite Autoimune Experimental/patologia , Camundongos , Camundongos Knockout , Subpopulações de Linfócitos T/imunologia , Subpopulações de Linfócitos T/metabolismo , Migração Transendotelial e Transepitelial/imunologia
7.
mBio ; 12(2)2021 03 16.
Artigo em Inglês | MEDLINE | ID: mdl-33727362

RESUMO

The human immunodeficiency virus (HIV) enters the central nervous system (CNS) within a few days after primary infection, establishing viral reservoirs that persist even with combined antiretroviral therapy (cART). We show that monocytes from people living with HIV (PLWH) on suppressive cART harboring integrated HIV, viral mRNA, and/or viral proteins preferentially transmigrate across the blood-brain barrier (BBB) to CCL2 and are significantly enriched post-transmigration, and even more highly enriched posttransmigration than T cells with similar properties. Using HIV-infected ART-treated mature monocytes cultured in vitro, we recapitulate these findings and demonstrate that HIV+ CD14+ CD16+ ART-treated monocytes also preferentially transmigrate. Cenicriviroc and anti-JAM-A and anti-ALCAM antibodies significantly and preferentially reduce/block transmigration of HIV+ CD14+ CD16+ ART-treated monocytes. These findings highlight the importance of monocytes in CNS HIV reservoirs and suggest targets to eliminate their formation and reseeding.IMPORTANCE We characterized mechanisms of CNS viral reservoir establishment/replenishment using peripheral blood mononuclear cells (PBMC) of PLWH on cART and propose therapeutic targets to reduce/block selective entry of cells harboring HIV (HIV+) into the CNS. Using DNA/RNAscope, we show that CD14+ CD16+ monocytes with integrated HIV, transcriptionally active, and/or with active viral replication from PBMC of PLWH prescribed cART and virally suppressed, selectively transmigrate across a human BBB model. This is the first study to our knowledge demonstrating that monocytes from PLWH with HIV disease for approximately 22 years and with long-term documented suppression can still carry virus into the CNS that has potential to be reactivated and infectious. This selective entry into the CNS-and likely other tissues-indicates a mechanism of reservoir formation/reseeding in the cART era. Using blocking studies, we propose CCR2, JAM-A, and ALCAM as targets on HIV+ CD14+ CD16+ monocytes to reduce and/or prevent CNS reservoir replenishment and to treat HAND and other HIV-associated comorbidities.


Assuntos
Sistema Nervoso Central/virologia , Reservatórios de Doenças/virologia , Leucócitos Mononucleares/fisiologia , Leucócitos Mononucleares/virologia , Migração Transendotelial e Transepitelial/imunologia , Antirretrovirais/farmacologia , Antirretrovirais/uso terapêutico , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Asparaginase/uso terapêutico , Barreira Hematoencefálica/efeitos dos fármacos , Barreira Hematoencefálica/imunologia , Barreira Hematoencefálica/virologia , Ensaios de Migração de Leucócitos , Sistema Nervoso Central/efeitos dos fármacos , Quimiocina CCL2/imunologia , Quimiocina CCL2/farmacologia , Citarabina/uso terapêutico , Daunorrubicina/uso terapêutico , Feminino , Infecções por HIV/virologia , Humanos , Técnicas In Vitro , Leucócitos Mononucleares/efeitos dos fármacos , Leucócitos Mononucleares/imunologia , Masculino , Pessoa de Meia-Idade , Tioguanina/uso terapêutico
8.
J Invest Dermatol ; 141(4): 787-799, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-32888954

RESUMO

Neutrophil infiltration and papillary vessel dilation are hallmarks of the initiation phase of psoriatic lesions. However, how neutrophils aggravate psoriasis development during transendothelial migration and the interaction between neutrophils and cutaneous vascular endothelial cells are less well-understood. In this study, we reported that neutrophils and cutaneous vascular endothelial cells activated each other when neutrophils migrated through the cutaneous endothelial barrier. In addition, neutrophil infiltration into skin lesions caused vascular remodeling including cutaneous vasodilation and enhanced vascular permeability in vivo and in vitro. Microarray gene profile data showed that matrix metallopeptidase (MMP)-9 was overexpressed in psoriatic neutrophils, and zymography assay further validated the bioactivity of MMP-9 secreted by psoriatic neutrophils. Moreover, MMP-9 activated vascular endothelial cells through the extracellular signal‒regulated kinase 1/2 and p38-MAPK signaling pathways, enhancing CD4+ T-cell transmigration in vitro. Correspondingly, an MMP-9 inhibitor significantly reduced cutaneous vasodilation, vascular permeability, and psoriatic symptoms in an imiquimod- or IL-23‒induced psoriasiform mouse model. Overall, our study demonstrates that neutrophil-derived MMP-9 induces cutaneous vasodilation and hyperpermeability by activating cutaneous vascular endothelial cells, thus facilitating psoriatic lesion development, which increases our knowledge on the role of neutrophils in the pathogenesis of psoriasis.


Assuntos
Metaloproteinase 9 da Matriz/metabolismo , Inibidores de Metaloproteinases de Matriz/farmacologia , Neutrófilos/imunologia , Psoríase/imunologia , Animais , Biópsia , Permeabilidade Capilar/efeitos dos fármacos , Permeabilidade Capilar/imunologia , Linhagem Celular , Quimiotaxia/imunologia , Modelos Animais de Doenças , Células Endoteliais/efeitos dos fármacos , Células Endoteliais/imunologia , Células Endoteliais/patologia , Endotélio Vascular/imunologia , Endotélio Vascular/patologia , Feminino , Imiquimode/imunologia , Interleucina-23/imunologia , Sistema de Sinalização das MAP Quinases/imunologia , Inibidores de Metaloproteinases de Matriz/uso terapêutico , Camundongos , Infiltração de Neutrófilos , Neutrófilos/metabolismo , Cultura Primária de Células , Psoríase/tratamento farmacológico , Psoríase/patologia , Proteínas Recombinantes/metabolismo , Pele/irrigação sanguínea , Pele/imunologia , Migração Transendotelial e Transepitelial/imunologia , Vasodilatação/imunologia
9.
J Immunol ; 205(10): 2806-2820, 2020 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-33055281

RESUMO

Intermediate monocytes (iMo; CD14+CD16+) increase in number in the circulation of patients with unstable coronary artery disease (CAD), and their recruitment to inflamed arteries is implicated in events leading to mortality following MI. Monocyte recruitment to inflamed coronary arteries is initiated by high affinity ß2-integrin (CD11c/CD18) that activates ß1-integrin (VLA-4) to bind endothelial VCAM-1. How integrin binding under shear stress mechanosignals a functional shift in iMo toward an inflammatory phenotype associated with CAD progression is unknown. Whole blood samples from patients treated for symptomatic CAD including non-ST elevation MI, along with healthy age-matched subjects, were collected to assess chemokine and integrin receptor levels on monocytes. Recruitment on inflamed human aortic endothelium or rVCAM-1 under fluid shear stress was assessed using a microfluidic-based artery on a chip (A-Chip). Membrane upregulation of high affinity CD11c correlated with concomitant activation of VLA-4 within focal adhesive contacts was required for arrest and diapedesis across inflamed arterial endothelium to a greater extent in non-ST elevation MI compared with stable CAD patients. The subsequent conversion of CD11c from a high to low affinity state under fluid shear activated phospho-Syk- and ADAM17-mediated proteolytic cleavage of CD16. This marked the conversion of iMo to an inflammatory phenotype associated with nuclear translocation of NF-κB and production of IL-1ß+ We conclude that CD11c functions as a mechanoregulator that activates an inflammatory state preferentially in a majority of iMo from cardiac patients but not healthy patients.


Assuntos
Antígeno CD11c/metabolismo , Doença da Artéria Coronariana/imunologia , Endotélio Vascular/imunologia , Monócitos/imunologia , Infarto do Miocárdio sem Supradesnível do Segmento ST/imunologia , Adulto , Idoso , Regulação Alostérica/imunologia , Aorta/citologia , Estudos de Casos e Controles , Técnicas de Cultura de Células , Linhagem Celular , Membrana Celular/metabolismo , Doença da Artéria Coronariana/sangue , Doença da Artéria Coronariana/cirurgia , Vasos Coronários/citologia , Vasos Coronários/imunologia , Células Endoteliais/citologia , Células Endoteliais/imunologia , Células Endoteliais/metabolismo , Endotélio Vascular/metabolismo , Feminino , Humanos , Integrina alfa4beta1/metabolismo , Dispositivos Lab-On-A-Chip , Masculino , Técnicas Analíticas Microfluídicas/instrumentação , Pessoa de Meia-Idade , Infarto do Miocárdio sem Supradesnível do Segmento ST/sangue , Infarto do Miocárdio sem Supradesnível do Segmento ST/cirurgia , Intervenção Coronária Percutânea , Proteínas Recombinantes/imunologia , Proteínas Recombinantes/metabolismo , Migração Transendotelial e Transepitelial/imunologia , Molécula 1 de Adesão de Célula Vascular/imunologia , Molécula 1 de Adesão de Célula Vascular/metabolismo
10.
Xi Bao Yu Fen Zi Mian Yi Xue Za Zhi ; 36(8): 699-703, 2020 Aug.
Artigo em Chinês | MEDLINE | ID: mdl-32958126

RESUMO

Objective To detect the expression of chemokine and adhesion molecules related to leukocytes' transendothelial migration, meanwhile, to investigate changes of reticular fibers and the expression of vimentin and matrix metalloproteinase-9 (MMP9) in lung tissues after surgical removal of mouse tumor-bearing lymph node, revealing their changes and roles in the formation of pre-metastatic microenvironment in the lung. Methods B16F10 melanoma cells were inoculated into mouse subiliac lymph node (SiLN). Twenty mice were equally divided into groups with or without (as a control group) tumor-bearing SiLN removal. Fifteen days later, tumor-bearing lymph node was surgically removed; 3 days after resection, mouse lung tissues were collected. The change of reticular fibers in lung tissues was observed by silver impregnation staining. The expression of C-C motif chemokine ligand 4 (CCL4), intercellular adhesion molecule-1 (ICAM-1), vascular cell adhesion molecule-1 (VCAM-1), vimentin and MMP9 in lung tissues was detected by Western blotting. Results Compared with control group, expression of MMP9 and vimentin increased significantly in the lung tissues of SiLN removal group; reticular fibers were obviously fractured and its per area was reduced. Moreover, expression of CCL4, ICAM-1 and VCAM-1 also significantly increased. Conclusion Expression of CCL4, ICAM-1, VCAM-1, MMP9 and vimentin in mouse lung tissues is promoted after surgical removal of tumor-bearing lymph node, contributing to inflammatory cells' adhesion to and extravasation across vascular endothelium and further resulting in the formation of inflammatory microenvironment.


Assuntos
Quimiocina CCL4 , Regulação da Expressão Gênica , Molécula 1 de Adesão Intercelular , Linfonodos , Neoplasias , Molécula 1 de Adesão de Célula Vascular , Animais , Quimiocina CCL4/genética , Regulação da Expressão Gênica/imunologia , Molécula 1 de Adesão Intercelular/genética , Linfonodos/imunologia , Linfonodos/cirurgia , Camundongos , Neoplasias/imunologia , Neoplasias/cirurgia , Migração Transendotelial e Transepitelial/imunologia , Molécula 1 de Adesão de Célula Vascular/genética
11.
J Neuroinflammation ; 17(1): 153, 2020 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-32386505

RESUMO

BACKGROUND: Multiple sclerosis (MS) is an autoimmune disease which results from the invasion of the brain by activated immune cells across the endothelial cells (ECs) of the blood-brain barrier (BBB), due to loss of immune self-tolerance. Many reports define the metabolic profile of immune cells in MS, however little is known about the metabolism of the BBB ECs during the disease. We aim to determine whether circulating factors in MS induce metabolic alterations of the BBB ECs compared to a healthy state, which can be linked with disruption of BBB integrity and subsequent immune cell extravasation. METHODS AND RESULTS: In this report, we used an in vitro model to study the effect of sera from naïve-to-treatment, relapsing-remitting MS (RRMS) patients on the human brain microvascular endothelium, comparing effects to age/sex-matched healthy donor (HD) sera. Our data show that RRMS serum components affect brain endothelial cells by impairing intercellular tightness through the down-modulation of occludin and VE-cadherin, and facilitating immune cell extravasation through upregulation of intercellular adhesion molecules (ICAM-1) and P-glycoprotein (P-gp). At a metabolic level, the treatment of the endothelial cells with RRMS sera reduced their glycolytic activity (measured through the extracellular acidification rate-ECAR) and oxygen consumption rate (oxidative phosphorylation rate-OCR). Such changes were associated with the down-modulation of endothelial glucose transporter 1 (GLUT-1) expression and by altered mitochondrial membrane potential. Higher level of reactive oxygen species released from the endothelial cells treated with RRMS sera indicate a pro-inflammatory status of the cells together with the higher expression of ICAM-1, endothelial cell cytoskeleton perturbation (stress fibres) as well as disruption of the cytoskeleton signal transduction MSK1/2 and ß-catenin phosphorylation. CONCLUSIONS: Our data suggest that circulating factors present in RRMS patient serum induce physiological and biochemical alterations to the BBB, namely reducing expression of essential tightness regulators, as well as reduced engagement of glycolysis and alteration of mitochondrial potential. As these last changes have been linked with alterations in nutrient usage and metabolic function in immune cells; we propose that the BBB endothelium of MS patients may similarly undergo metabolic dysregulation, leading to enhanced permeability and increased disease susceptibility.


Assuntos
Barreira Hematoencefálica/metabolismo , Endotélio Vascular/metabolismo , Esclerose Múltipla Recidivante-Remitente/sangue , Esclerose Múltipla Recidivante-Remitente/imunologia , Adulto , Permeabilidade Capilar/imunologia , Células Cultivadas , Feminino , Humanos , Masculino , Migração Transendotelial e Transepitelial/imunologia
12.
Immunity ; 52(3): 513-527.e8, 2020 03 17.
Artigo em Inglês | MEDLINE | ID: mdl-32187519

RESUMO

Intrinsic complement C3 activity is integral to human T helper type 1 (Th1) and cytotoxic T cell responses. Increased or decreased intracellular C3 results in autoimmunity and infections, respectively. The mechanisms regulating intracellular C3 expression remain undefined. We identified complement, including C3, as among the most significantly enriched biological pathway in tissue-occupying cells. We generated C3-reporter mice and confirmed that C3 expression was a defining feature of tissue-immune cells, including T cells and monocytes, occurred during transendothelial diapedesis, and depended on integrin lymphocyte-function-associated antigen 1 (LFA-1) signals. Immune cells from patients with leukocyte adhesion deficiency type 1 (LAD-1) had reduced C3 transcripts and diminished effector activities, which could be rescued proportionally by intracellular C3 provision. Conversely, increased C3 expression by T cells from arthritis patients correlated with disease severity. Our study defines integrins as key controllers of intracellular complement, demonstrates that perturbations in the LFA-1-C3-axis contribute to primary immunodeficiency, and identifies intracellular C3 as biomarker of severity in autoimmunity.


Assuntos
Complemento C3/imunologia , Integrinas/imunologia , Antígeno-1 Associado à Função Linfocitária/imunologia , Linfócitos/imunologia , Monócitos/imunologia , Migração Transendotelial e Transepitelial/imunologia , Adulto , Idoso , Animais , Artrite Reumatoide/imunologia , Artrite Reumatoide/metabolismo , Artrite Reumatoide/patologia , Criança , Pré-Escolar , Complemento C3/genética , Complemento C3/metabolismo , Feminino , Humanos , Integrinas/metabolismo , Antígeno-1 Associado à Função Linfocitária/metabolismo , Linfócitos/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Pessoa de Meia-Idade , Monócitos/metabolismo , Transdução de Sinais/imunologia
13.
Viruses ; 12(3)2020 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-32121564

RESUMO

While antiretroviral therapy increases the longevity of people living with HIV (PLWH), about 30% of this population suffers from three or more concurrent comorbidities, whose mechanisms are not well understood. Chronic activation and dysfunction of the immune system could be one potential cause of these comorbidities. We recently demonstrated reduced macrophage infiltration and delayed resolution of inflammation in the lungs of HIV-transgenic mice. Additionally, trans-endothelial migration of HIV-positive macrophages was reduced in vitro. Here, we analyze macrophages' response to LPS challenge in the kidney and peritoneum of HIV-Tg mice. In contrast to the lung infiltration, renal and peritoneal macrophage infiltrations were similar in WT and HIV-Tg mice. Higher levels of HIV-1 gene expression were detected in lung macrophages compared to peritoneal macrophages. In peritoneal macrophages, HIV-1 gene expression was increased when they were cultured at 21% O2 compared to 5% O2, inversely correlating with reduced trans-endothelial migration at higher oxygen levels in vitro. The resolution of macrophage infiltration was reduced in both the lung and the peritoneal cavity of HIV-Tg mice. Taken together, our study described the organ-specific alteration of macrophage dynamics in HIV-Tg mice. The delayed resolution of macrophage infiltration might constitute a risk factor for the development of multiple comorbidities in PLWH.


Assuntos
Regulação Viral da Expressão Gênica , Infecções por HIV/virologia , HIV-1/fisiologia , Interações Hospedeiro-Patógeno , Macrófagos/virologia , Animais , Biomarcadores , Modelos Animais de Doenças , Infecções por HIV/imunologia , Infecções por HIV/patologia , Interações Hospedeiro-Patógeno/imunologia , Humanos , Imuno-Histoquímica , Imunofenotipagem , Rim/metabolismo , Rim/patologia , Pulmão/metabolismo , Pulmão/patologia , Macrófagos/imunologia , Macrófagos/metabolismo , Macrófagos Peritoneais/imunologia , Macrófagos Peritoneais/metabolismo , Macrófagos Peritoneais/virologia , Camundongos , Camundongos Transgênicos , Especificidade de Órgãos , Oxigênio/metabolismo , Migração Transendotelial e Transepitelial/imunologia
14.
J Immunol ; 204(8): 2043-2052, 2020 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-32169847

RESUMO

Control of lymphocyte infiltration in kidney is a potential therapeutic strategy for lupus nephritis, considering that control of lymphocyte migration by sphingosine 1 phosphate has been implicated in inflammation-related pathology. The peptide inhibitor of the transendothelial migration (PEPITEM)/cadherin (CDH) 15 axis was recently reported to promote sphingosine 1 phosphate secretion. In this study, we investigated whether CDH15 is expressed in the kidney of MRL/lpr mice and whether lymphocyte infiltration is suppressed by exogenously administered PEPITEM. Mice (18 wk old) were randomized into 4-wk treatment groups that received PEPITEM or PBS encapsulated in dipalmitoylphosphatidylcholine liposomes. Enlargement of the kidney, spleen, and axillary lymph nodes was suppressed by PEPITEM treatment, which also blocked infiltration of double-negative T lymphocytes into the kidney and glomerular IgG/C3 deposition, reduced proteinuria, and increased podocyte density. Immunohistochemical analysis revealed that the PEPITEM receptor CDH15 was expressed on vascular endothelial cells of glomeruli and kidney arterioles, skin, and peritoneum in lupus mice at 22 wk of age but not in 4-wk-old mice. These results suggest that PEPITEM inhibits lymphocyte migration and infiltration into the kidney, thereby preserving the kidney structure and reducing proteinuria. Thus, PEPITEM administration may be considered as a potential therapeutic tool for systemic lupus erythematosus.


Assuntos
Caderinas/metabolismo , Glomerulonefrite/tratamento farmacológico , Lúpus Eritematoso Sistêmico/tratamento farmacológico , Peptídeos/farmacologia , Linfócitos T/efeitos dos fármacos , Animais , Modelos Animais de Doenças , Feminino , Glomerulonefrite/imunologia , Injeções Subcutâneas , Lúpus Eritematoso Sistêmico/imunologia , Camundongos , Camundongos Endogâmicos MRL lpr , Peptídeos/administração & dosagem , Linfócitos T/imunologia , Migração Transendotelial e Transepitelial/efeitos dos fármacos , Migração Transendotelial e Transepitelial/imunologia
15.
J Clin Invest ; 130(5): 2602-2619, 2020 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-32017712

RESUMO

Lymph node stromal cells (LNSCs) regulate immunity through constructing lymphocyte niches. LNSC-produced laminin α5 (Lama5) regulates CD4+ T cells but the underlying mechanisms of its functions are poorly understood. Here we show that depleting Lama5 in LNSCs resulted in decreased Lama5 protein in the LN cortical ridge (CR) and around high endothelial venules (HEVs). Lama5 depletion affected LN structure with increased HEVs, upregulated chemokines, and cell adhesion molecules, and led to greater numbers of Tregs in the T cell zone. Mouse and human T cell transendothelial migration and T cell entry into LNs were suppressed by Lama5 through the receptors α6 integrin and α-dystroglycan. During immune responses and allograft transplantation, depleting Lama5 promoted antigen-specific CD4+ T cell entry into the CR through HEVs, suppressed T cell activation, and altered T cell differentiation to suppressive regulatory phenotypes. Enhanced allograft acceptance resulted from depleting Lama5 or blockade of T cell Lama5 receptors. Lama5 and Lama4/Lama5 ratios in allografts were associated with the rejection severity. Overall, our results demonstrated that stromal Lama5 regulated immune responses through altering LN structures and T cell behaviors. This study delineated a stromal Lama5-T cell receptor axis that can be targeted for immune tolerance modulation.


Assuntos
Laminina/imunologia , Linfonodos/imunologia , Tolerância ao Transplante/imunologia , Animais , Distroglicanas/metabolismo , Humanos , Integrina alfa6/metabolismo , Laminina/genética , Laminina/metabolismo , Linfonodos/citologia , Linfonodos/metabolismo , Vasos Linfáticos/citologia , Vasos Linfáticos/imunologia , Vasos Linfáticos/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Células Estromais/citologia , Células Estromais/imunologia , Células Estromais/metabolismo , Linfócitos T/citologia , Linfócitos T/imunologia , Linfócitos T/metabolismo , Linfócitos T Reguladores/imunologia , Migração Transendotelial e Transepitelial/imunologia
16.
Cell Rep ; 30(4): 1052-1062.e5, 2020 01 28.
Artigo em Inglês | MEDLINE | ID: mdl-31995749

RESUMO

Regulatory T cells (Tregs) express high levels of cell surface lymphotoxin alpha beta (LTα1ß2) to activate the LT beta receptor (LTßR) on the lymphatic endothelial cells (LECs), modulating LEC adhesion molecules, intercellular junctions, and chemokines. We demonstrate a role for Tregs through this pathway to condition the permissiveness of lymphatic endothelia for transendothelial migration (TEM), thus gating leukocyte traffic. Human Tregs share the same property with murine Tregs. Activation of TLR2 on Tregs during inflammation specifically augments LTα1ß2-LTßR signaling, which further enhances the permissiveness of LECs to facilitate TEM. The conditioning of endothelia may promote the resolution of inflammation by directing leukocytes out of tissues to lymphatic vessels and draining lymph nodes (dLNs). Thus, Tregs interact with lymphatic endothelia under homeostasis and inflammation and dictate endothelial permissiveness and gating mechanisms for subsequent leukocyte migration through endothelial barriers.


Assuntos
Movimento Celular/imunologia , Endotélio Linfático/metabolismo , Inflamação/metabolismo , Linfócitos T Reguladores/metabolismo , Receptor 2 Toll-Like/metabolismo , Migração Transendotelial e Transepitelial/imunologia , Animais , Linfócitos T CD4-Positivos/metabolismo , Caderinas/metabolismo , Linhagem Celular , Movimento Celular/efeitos dos fármacos , Quimiocina CCL21/metabolismo , Endotélio Linfático/efeitos dos fármacos , Humanos , Inflamação/imunologia , Inflamação/patologia , Interleucina-2/farmacologia , Ilhotas Pancreáticas/metabolismo , Linfonodos/imunologia , Linfonodos/metabolismo , Receptor beta de Linfotoxina/metabolismo , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Sistema de Sinalização das MAP Quinases/genética , Sistema de Sinalização das MAP Quinases/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , NF-kappa B/antagonistas & inibidores , NF-kappa B/metabolismo , Protocaderinas , Receptores de Interleucina-2/metabolismo , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/imunologia , Linfócitos T Reguladores/efeitos dos fármacos , Receptor 2 Toll-Like/imunologia , Migração Transendotelial e Transepitelial/efeitos dos fármacos , Molécula 1 de Adesão de Célula Vascular/metabolismo
17.
J Clin Invest ; 130(5): 2301-2318, 2020 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-31971917

RESUMO

Increased microvascular permeability to plasma proteins and neutrophil emigration are hallmarks of innate immunity and key features of numerous inflammatory disorders. Although neutrophils can promote microvascular leakage, the impact of vascular permeability on neutrophil trafficking is unknown. Here, through the application of confocal intravital microscopy, we report that vascular permeability-enhancing stimuli caused a significant frequency of neutrophil reverse transendothelial cell migration (rTEM). Furthermore, mice with a selective defect in microvascular permeability enhancement (VEC-Y685F-ki) showed reduced incidence of neutrophil rTEM. Mechanistically, elevated vascular leakage promoted movement of interstitial chemokines into the bloodstream, a response that supported abluminal-to-luminal neutrophil TEM. Through development of an in vivo cell labeling method we provide direct evidence for the systemic dissemination of rTEM neutrophils, and showed them to exhibit an activated phenotype and be capable of trafficking to the lungs where their presence was aligned with regions of vascular injury. Collectively, we demonstrate that increased microvascular leakage reverses the localization of directional cues across venular walls, thus causing neutrophils engaged in diapedesis to reenter the systemic circulation. This cascade of events offers a mechanism to explain how local tissue inflammation and vascular permeability can induce downstream pathological effects in remote organs, most notably in the lungs.


Assuntos
Permeabilidade Capilar/imunologia , Microvasos/imunologia , Ativação de Neutrófilo , Neutrófilos/imunologia , Migração Transendotelial e Transepitelial/imunologia , Animais , Permeabilidade Capilar/genética , Masculino , Camundongos , Camundongos Transgênicos , Microvasos/patologia , Neutrófilos/patologia , Migração Transendotelial e Transepitelial/genética
18.
J Immunol ; 204(1): 101-111, 2020 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-31776202

RESUMO

Streptococcus pneumoniae is a major cause of pneumonia, wherein infection of respiratory mucosa drives a robust influx of neutrophils. We have previously shown that S. pneumoniae infection of the respiratory epithelium induces the production of the 12-lipoxygenase (12-LOX)-dependent lipid inflammatory mediator hepoxilin A3, which promotes recruitment of neutrophils into the airways, tissue damage, and lethal septicemia. Pneumolysin (PLY), a member of the cholesterol-dependent cytolysin (CDC) family, is a major S. pneumoniae virulence factor that generates ∼25-nm diameter pores in eukaryotic membranes and promotes acute inflammation, tissue damage, and bacteremia. We show that a PLY-deficient S. pneumoniae mutant was impaired in triggering human neutrophil transepithelial migration in vitro. Ectopic production of PLY endowed the nonpathogenic Bacillus subtilis with the ability to trigger neutrophil recruitment across human-cultured monolayers. Purified PLY, several other CDC family members, and the α-toxin of Clostridium septicum, which generates pores with cross-sectional areas nearly 300 times smaller than CDCs, reproduced this robust neutrophil transmigration. PLY non-pore-forming point mutants that are trapped at various stages of pore assembly did not recruit neutrophils. PLY triggered neutrophil recruitment in a 12-LOX-dependent manner in vitro. Instillation of wild-type PLY but not inactive derivatives into the lungs of mice induced robust 12-LOX-dependent neutrophil migration into the airways, although residual inflammation induced by PLY in 12-LOX-deficient mice indicates that 12-LOX-independent pathways also contribute to PLY-triggered pulmonary inflammation. These data indicate that PLY is an important factor in promoting hepoxilin A3-dependent neutrophil recruitment across pulmonary epithelium in a pore-dependent fashion.


Assuntos
Araquidonato 12-Lipoxigenase/metabolismo , Infiltração de Neutrófilos/imunologia , Streptococcus pneumoniae/patogenicidade , Estreptolisinas/metabolismo , Migração Transendotelial e Transepitelial/imunologia , Ácido 8,11,14-Eicosatrienoico/análogos & derivados , Ácido 8,11,14-Eicosatrienoico/imunologia , Animais , Bacillus subtilis/genética , Bacillus subtilis/patogenicidade , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Toxinas Bacterianas/metabolismo , Linhagem Celular , Membrana Celular/patologia , Clostridium septicum/metabolismo , Feminino , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Neutrófilos/imunologia , Infecções Pneumocócicas/patologia , Streptococcus pneumoniae/genética , Streptococcus pneumoniae/imunologia , Estreptolisinas/genética , Fatores de Virulência/metabolismo
19.
Methods Mol Biol ; 2087: 79-91, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31728984

RESUMO

Transmigration of neutrophils through an epithelial layer, such as in the intestine or lung, is a necessary response to a perceived attack at the mucosal surface of that tissue. This process is dynamically regulated by a number of interactive events between the neutrophil and other cell types and allows for an effective and localized neutrophil response. However, in certain inflammatory diseases, including inflammatory bowel disease and chronic obstructive pulmonary disease (COPD), persistent neutrophil accumulation can contribute to disease pathology. Elucidating the mechanisms of this aberrant neutrophil accumulation is crucial for understanding and ameliorating these disease processes. The method we describe here is a controlled model system that allows for the investigation of the interactive signals involved in neutrophil transmigration through epithelial barriers, and possible mechanisms of deregulation of this process.


Assuntos
Epitélio/imunologia , Epitélio/metabolismo , Neutrófilos/imunologia , Neutrófilos/metabolismo , Migração Transendotelial e Transepitelial/imunologia , Linhagem Celular , Movimento Celular , Separação Celular , Células Cultivadas , Células Epiteliais , Humanos
20.
Brain ; 142(11): 3411-3427, 2019 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-31563951

RESUMO

Although the CNS is immune privileged, continuous search for pathogens and tumours by immune cells within the CNS is indispensable. Thus, distinct immune-cell populations also cross the blood-brain barrier independently of inflammation/under homeostatic conditions. It was previously shown that effector memory T cells populate healthy CNS parenchyma in humans and, independently, that CCR5-expressing lymphocytes as well as CCR5 ligands are enriched in the CNS of patients with multiple sclerosis. Apart from the recently described CD8+ CNS tissue-resident memory T cells, we identified a population of CD4+CCR5high effector memory cells as brain parenchyma-surveilling cells. These cells used their high levels of VLA-4 to arrest on scattered VCAM1, their open-conformation LFA-1 to crawl preferentially against the flow in search for sites permissive for extravasation, and their stored granzyme K (GZMK) to induce local ICAM1 aggregation and perform trans-, rather than paracellular diapedesis through unstimulated primary brain microvascular endothelial cells. This study included peripheral blood mononuclear cell samples from 175 healthy donors, 29 patients infected with HIV, with neurological symptoms in terms of cognitive impairment, 73 patients with relapsing-remitting multiple sclerosis in remission, either 1-4 weeks before (n = 29), or 18-60 months after the initiation of natalizumab therapy (n = 44), as well as white matter brain tissue of three patients suffering from epilepsy. We here provide ex vivo evidence that CCR5highGZMK+CD4+ effector memory T cells are involved in CNS immune surveillance during homeostasis, but could also play a role in CNS pathology. Among CD4+ T cells, this subset was found to dominate the CNS of patients without neurological inflammation ex vivo. The reduction in peripheral blood of HIV-positive patients with neurological symptoms correlated to their CD4 count as a measure of disease progression. Their peripheral enrichment in multiple sclerosis patients and specific peripheral entrapment through the CNS infiltration inhibiting drug natalizumab additionally suggests a contribution to CNS autoimmune pathology. Our transcriptome analysis revealed a migratory phenotype sharing many features with tissue-resident memory and Th17.1 cells, most notably the transcription factor eomesodermin. Knowledge on this cell subset should enable future studies to find ways to strengthen the host defence against CNS-resident pathogens and brain tumours or to prevent CNS autoimmunity.


Assuntos
Granzimas/genética , Vigilância Imunológica/imunologia , Receptores CCR5/metabolismo , Migração Transendotelial e Transepitelial/genética , Migração Transendotelial e Transepitelial/imunologia , Complexo AIDS Demência/genética , Complexo AIDS Demência/psicologia , Adulto , Linfócitos T CD4-Positivos/imunologia , Células Endoteliais/imunologia , Células Endoteliais/patologia , Epilepsia/genética , Epilepsia/psicologia , Humanos , Molécula 1 de Adesão Intercelular/genética , Esclerose Múltipla Recidivante-Remitente/genética , Esclerose Múltipla Recidivante-Remitente/psicologia , Molécula 1 de Adesão de Célula Vascular/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA